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Abstract

This paper considers the portfolio selection and capital injection problem for a diffusion risk

model within the classical Black-Scholes financial market. It is assumed that the original surplus

process of an insurance portfolio is described by a drifted Brownian motion, and that the surplus

can be invested in a risky asset and a risk-free asset. When the surplus hits zero, the company

can inject capital to keep the surplus positive. In addition, it is assumed that both fixed and

proportional costs are incurred upon each capital injection. Our objective is to minimize the

expected value of the discounted capital injection costs by controlling the investment policy and

the capital injection policy. We first prove the continuity of the value function and a verification

theorem for the corresponding HJB equation. We then show that the optimal investment policy

is a solution to a terminal value problem of an ordinary differential equation. In particular,

explicit solutions are derived in some special cases and a series solution is obtained for the

general case. Also, we propose a numerical method to solve the optimal investment and capital

injection policies. Finally, a numerical study is carried out to illustrate the effect of the model

parameters on the optimal policies.

Keywords Backward Euler method; Capital injection; HJB equation; Portfolio selection; Trans-

action costs
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1 Introduction

In the actuarial and mathematical insurance literatures, the portfolio selection problem for a dif-

fusion risk model within the classical Black-Scholes financial market has attracted great interest

in the past few decades. For example, Browne (1995) studied the optimal investment policy that

maximizes the utility of terminal wealth and minimizes the ruin probability; Bai and Guo (2008)

derived the optimal reinsurance and investment policies for the same problem with multiple risky

assets; Promislow and Young (2005) and Luo et al. (2008) considered the problem of minimizing

the ruin probability with reinsurance and investment controls. Furthermore, the portfolio selection

problem for a diffusion risk model with dividend payments has been studied by many authors.

Among them, Højgaard and Taksar (2001) studied the optimal dividend problem in a diffusion risk

model with stochastic investment returns; and Højgaard and Taksar (2004) considered the optimal

reinsurance, investment and dividend problem with the objective of maximizing the expected value

of total discounted dividend payments prior to the ruin time. For more details about the portfolio

selection problem in modern risk theory, we refer the readers to Liu and Yang (2004), Zhang and

Siu (2009), Schmidli (2008), and references therein.

In recent years, capital injection is another key factor to consider in stochastic control problems.

The idea of capital injection is to keep the company’s surplus process above some fixed level. For

an insurance company, an obvious advantage of injecting capital is to avoid the event of ruin. As a

result, the total amount of capital injection can be treated as the cost of keeping the company alive

in the market. From this view point, the expected value of the total discounted capital injection

costs, in addition to the ruin probability and the expected value of total discounted dividend

payments, can serve as another important objective to optimize. In practice, the issue of capital

injection is also of great interest to a mutual insurance company that is not interested in profits

but would like to minimize the cost associated with raising additional capital. Recent research in

this direction can be found in Sethi and Taksar (2002), Løkka and Zervos (2008), Kulenko and

Schimidli (2008), Paulsen (2008), Eisenberg and Schmidli (2009), Yao et al. (2010), Scheer and

Schimidli (2011), Zhou and Yuen (2012), and references therein.

Inspired by these literatures, we study the optimization problem of portfolio selection and capital

injection for an insurance company by minimizing the expected value of the total discounted capital

injection costs. In the model set-up of previous works, we note that there exists only a risky asset

but without a risk-free asset in the financial market, for example, see Browne (1995) and Eisenberg
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(2010). Specifically, it was assumed that part of a company’s surplus can be invested in the risky

asset, and that the remaining surplus is kept in cash. With this assumption, it was shown that the

optimal amount invested in the risky asset is constant and does not change with the surplus value

or the time. In the present paper, a few more realistic features are considered. The first feature

is to include not only proportional costs but also a fixed cost for capital injection. The second

is to incorporate a risk-free asset into the financial market as it is a very important investment

tool, especially for an insurance company. In this model set-up, we obtain a semi-explicit optimal

investment policy in series form when both risk-free interest rate and discount rate are positive.

The optimal investment policy is no longer a constant value. Furthermore, the optimal amount of

capital injection can be explicitly obtained.

The rest of the paper is organized as follows. In Section 2, we present the formulation of the

stochastic control problem of this study. In Section 3, we prove the continuity of the value function

and the verification theorem for the solution to the HJB equation. In Section 4, we derive the

solution to the HJB equation. Finally, in Section 5, we carry out a numerical study to assess the

impact of the model parameters on the optimal investment and capital injection policies.

2 Model formulation

Let (Ω,F , {Ft},P) be a filtered probability space where the filtration {Ft} satisfies the usual con-

ditions. Throughout the paper, it is assumed that all stochastic processes and random variables

are well defined on this probability space.

Consider the classical Black-Scholes market, which includes one risk-free asset and one risky

asset. The price process of the risk-free asset {Pt} is given by

dPt = r0Ptdt, t > 0,

where r0 ≥ 0 is the risk-free interest rate. The price process of the risky asset {St} follows a

geometric Brownian motion given by

dSt

St
= αdt+ βdBS

t , t > 0,

where α and β are positive constants, and {BS
t } is a standard Brownian motion with respect to

{Ft} under P. As usual, we assume that there is a positive market-risk premium which implies

r0 < α.
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Suppose that the surplus process before investments and injections of a large insurance company

follows a diffusion process {Xt} which has the form

dXt = µdt+ σdBX
t , t > 0, with X0 = x, (2.1)

where µ ≥ 0 is the profit rate, σ > 0 is the volatility, and the process {BX
t } is also a standard

Brownian motion with respect to {Ft} under P. It is assumed that the two Brownian motions

{BS
t } and {BX

t } are dependent with a correlation coefficient ρ. Therefore, we have |ρ| ≤ 1 and

E[BS
t B

X
t ] = ρt for t > 0.

We now consider a portfolio selection and capital injection problem. Assume that the company’s

surplus can be invested in the Black-Scholes market when it is positive. Let π = {πt, t ≥ 0} be

an investment policy where πt denotes the amount of money invested in the risky asset at time t.

Note that the remaining part of the surplus is put in the risk-free asset. We further assume that

there is no transaction cost for the investment, and that there is no restriction on the investment

policy (that is, both short selling of the risky asset and borrowing money at the risk-free interest

rate are allowed). In addition, to avoid ruin, capital injection can be made in the impulse form

with a linear cost function when the company’s surplus hits zero.1 For each capital injection, there

exist transaction costs which include a fixed cost K > 0 and a proportional cost rate l ≥ 1. Thus,

if the capital c is injected at time t, then the total capital injection cost K + lc occurs at time t.

Consider an investment policy π and a capital injection policy c. The company’s surplus of

(2.1) at time t > 0 can be rewritten as

Xπ,c
t = x+ µt+ σBX

t +

∫ t

0

[
r0X

π,c
s− + (α− r0)πs

]
ds+

∫ t

0
βπsdB

S
s +

∑
0≤s≤t

cI{Xπ,c
s− =0}, (2.2)

with Xπ,c
0− = x. The pair of policies (π, c) is said to be admissible if

(1) π is a predictable process with respect to {Ft} such that, for any fixed T > 0,∫ T

0
E[π2

s ]ds < ∞; (2.3)

(2) c is a constant such that 0<c < ∞;

(3) the stochastic differential equation (2.2) has a unique strong solution.

1Here, we fix the surplus level for capital injection at zero. For a model with flexible surplus level for capital

injection, we refer the readers to Sethi and Taksar (2002).
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Denote by Z the set of all admissible policies. Note that, for each pair of Markov control policies

(π, c) ∈ Z, the surplus process {Xπ,c
t } determined by the stochastic differential equation (2.2) is a

strong Markov process. Associated with {Xπ,c
t }, we define an operator Aπ such that, for any twice

continuously differentiable function f(x),

Aπf(x) =
1

2
[β2π2 + 2ρβσπ + σ2]f ′′(x) + [r0x+ (α− r0)π + µ]f ′(x), x > 0.

In this paper, we aim at minimizing the present value of the total capital injection costs in

the presence of investment and capital injection policies. Note that the controlled process (2.2)

only involves the control variables (π, c) and the state of controlled process Xπ,c
t but not the state

variables St. So, the performance function associated with this stochastic control problem is defined

as

V π,c(x) = E

∑
t≥0

e−δt(K + lc)I{Xπ,c
t− =0}|X

π,c
0− = x

 , x > 0,

for any (π, c) ∈ Z, where δ ≥ 0 is a constant discount rate. As a result, the value function is given

by

V (x) = inf
(π,c)∈Z

V π,c(x), x > 0. (2.4)

Our objective is to find a pair of optimal policies (π∗, c∗) ∈ Z such that V (x) = V π∗,c∗(x), which

leads to a regular-impulse mixed stochastic control problem. Note that the optimization problem

remains the same when a multiplier 1/l is applied to the performance function. Thus, without loss

of generality, we set l = 1.

3 Continuity of the value function and verification theorem

In this section, we prove continuity of the value function and derive the boundary conditions for the

value function at zero and infinity. In addition, by employing the dynamic programming principle,

we provide the HJB equation satisfied by the value function. We also present the verification

theorem for the solution to the HJB equation with the corresponding boundary conditions.

Firstly consider the company’s initial surplus process {Xt} given by (2.1). We define the first

hitting time τXy = inf{t ≥ 0;Xt = y}. In addition, we denote ρ+ and ρ− as the positive and

negative root, respectively, to the equation: 1
2σ

2x2 + µx− δ = 0. That is,

ρ+ =
−µ+

√
µ2 + 2δσ2

σ2
and ρ− =

−µ−
√

µ2 + 2δσ2

σ2
.

Associated with the stochastic process {Xt}, we have the following result.
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Lemma 3.1. For any y ≥ x ≥ 0, it follows that

E
[
e−δτXy I{τXy <τX0 }|X0 = x

]
=

eρ+x − eρ−x

eρ+y − eρ−y
, (3.1)

E
[
e−δτX0 I{τX0 <τXy }|X0 = x

]
=

eρ+yeρ−x − eρ+xeρ−y

eρ+y − eρ−y
, (3.2)

E
[
e−δτX0 ∧τXy |X0 = x

]
=

1− eρ−y

eρ+y − eρ−y
eρ+x +

eρ+y − 1

eρ+y − eρ−y
eρ−x, (3.3)

and, for any x ≥ y ≥ 0, it follows that

E
[
e−δτXy |X0 = x

]
= eρ−(x−y). (3.4)

Proof. The results (3.1)–(3.3) are directly given by Borodin and Salminen (2002, page 233). In

addition, (3.4) is the limiting case of (3.2) by letting y → ∞, and then replacing x by x− y.

Employing Lemma 3.1, we can give an upper bound for the value function V (x), which does

not depend on the risk-free rate r0.

Proposition 3.1. The value function V (x) of (2.4) is bounded such that

V (x) ≤ K + c∗

1− eρ−c∗
eρ−x, x > 0, (3.5)

where c∗ > 0 is the unique solution to the equation

1− eρ−c+(K + c)ρ−e
ρ−c = 0. (3.6)

Proof. To give an upper bound for V (x), we consider a special investment policy π such that πt = 0

for all t ≥ 0. In this case, we note that the surplus process with r0 > 0 is always larger than that

with r0 = 0, so the discounted capital injection with r0 > 0 is always less than that with r0 = 0.

Thus, in the special case that πt = 0 for all t ≥ 0 and r0 = 0, V π,c(x) is an upper bound for V (x)

of (2.4).

In this special case, according to the strong Markov property, the performance function V π,c(x)

satisfies

V π,c(x) = E
[
e−δτXc |X0 = x

]
V π,c(c), x ≥ c,

V π,c(x) = E
[
e−δτX0 |X0 = x

]
(K + c+ V π,c(c)), x ≥ 0.

These together with (3.4) yield

V π,c(x) =
K + c

1− eρ−c
eρ−x, x ≥ c. (3.7)
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On the other hand, for 0 ≤ x ≤ c, we have

V π,c(x) = E
[
e−δτX0 ∧τXc |X0 = x

]
V π,c(c) + E

[
e−δτX0 I{τX0 <τXc }|X0 = x

]
(K + c)

=
K + c

1− eρ−c
eρ−x, (3.8)

where the last equality follows by direct calculations using (3.2), (3.3) and (3.7). Thus, according

to (3.7) and (3.8), it follows that

V (x) ≤ inf
c≥0

V π,c(x) = inf
c≥0

K + c

1− eρ−c
eρ−x, x ≥ 0. (3.9)

Taking the first derivative with respect to c yields that the minimizer c = c∗ should be the solution

to (3.6). In addition, the left hand side of (3.6) is an increasing function with respect to c, and is

negative for c = 0 and positive as c → ∞. Thus, the solution c∗ to (3.6) is unique.

Proposition 3.2. The value function V (x) of (2.4) is a continuous and strictly decreasing function.

Proof. We first define a special surplus process {Yt} such that dYt = (r0Yt + µ)dt+ σdBX
t , and its

first hitting time τYy = inf{t ≥ 0;Yt = y}.

For any x > 0, h > 0 and given an admissible policy π, we define a new admissible policy π̃

such that

π̃t =

 0, 0 ≤ t < τYx ,

πt−τYx
, t ≥ τYx ,

where τYx is the first hitting time of the surplus process {Yt} with Y0 = x + h. Then, employing

the strong Markov property, we obtain

V π̃,c(x+ h) = E[e−δτYx |Y0 = x+ h]V π,c(x).

Taking the infimum in the admissible set gives

V (x+ h) ≤ inf
(π,c)∈Z

V π̃,c(x+ h) = E[e−δτYx |Y0 = x+ h]V (x) < V (x),

which implies that V (x) is a strictly decreasing function.

Also, for any x > 0, h > 0 and given an admissible policy π for initial surplus x+ h, we define

a new admissible policy π̂ such that

π̂t =

 0, 0 ≤ t < τYx+h,

πt−τYx+h
, t ≥ τYx+h,
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where τYx+h is the first hitting time of the surplus process {Yt} with Y0 = x. Again, employing the

strong Markov property, we obtain

V π̂,c(x) = E
[
e−δτYx+hI{τYx+h<τY0 }|Y0 = x

]
V π,c(x+ h)

+E
[
e−δτY0 I{τY0 <τYx+h}

|Y0 = x
]
(K + c+ V π̂,c(c)). (3.10)

Note that, {Xt} is defined by (2.1) and {Yt} is defined at the beginning of the proof. Given

the same initial value X0 = x and Y0 = x, it follows that τYx+h ≤ τXx+h, τY0 ≥ τX0 and hence

{τY0 < τYx+h} ⊆ {τX0 < τXx+h}. Thus, according to (3.2) and (3.5), it follows that

0 ≤ limh→0 E
[
e−δτY0 I{τY0 <τYx+h}

|Y0 = x
]
(K + c+ V π̂,c(c))

≤ limh→0 E
[
e−δτX0 I{τX0 <τXx+h}

|X0 = x
]
(K + c+ V π̂,c(c)) = 0.

Then, taking infimum in the admissible set on both sides of (3.10) yields

V (x) ≤ E
[
e−δτYx+hI{τYx+h<τY0 }|Y0 = x

]
V (x+ h) +O(h),

where O(h) denotes infinitesimal of the same order with h. Combining this with (3.1) and (3.5)

and using the same arguments above, we have

0 < V (x)− V (x+ h) ≤
(
1− E

[
e−δτYx+hI{τYx+h<τY0 }|Y0 = x

])
V (x+ h) +O(h)

≤
(
1− E

[
e−δτXx+hI{τXx+h<τX0 }|X0 = x

])
V (x+ h) +O(h)

≤

(
1− e(ρ+−ρ−)x − 1

e(ρ+−ρ−)(x+h) − 1
e−ρ−h

)
K + c∗

1− eρ−c∗
eρ−(x+h) +O(h)

= O(h),

which means that V (x) is continuous from the right. Along the same lines, we can show V (x) is

also continuous from the left. Hence, we conclude that V (x) is a continuous function.

In the following proposition, the boundary conditions for the value function are given.

Proposition 3.3. The value function V (x) of (2.4) satisfies

lim
x→∞

V (x) = 0, (3.11)

and

V (0) = min
c>0

{V (c) +K + c} . (3.12)
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Proof. For the special investment policy πt = 0 for all t ≥ 0, it follows from Gerber and Yang

(2007) that the surplus process will never lead to ruin as x → ∞, so capital injection will never

happen in this case. Hence, (3.11) follows. In addition, the boundary condition (3.11) can also be

directly derived from (3.5).

Note that capital injection is a compulsory action when the surplus x = 0. If c is the amount

of capital injection, then the surplus increases from 0 to c, and the value function takes a value of

V (c) +K + c. According to the definition of the value function, the amount of capital injection c

should minimize V (c) +K + c for c > 0. Thus, (3.12) follows.

Since the value function V (x) has been proved to be continuous, the following dynamic pro-

gramming principle holds:

V (x) = inf
(π,c)∈Z

E
[
e−δ(τ∧τ0)V

(
Xπ,c

(τ∧τ0)−

)
|Xπ,c

0− = x
]
, (3.13)

for any x > 0 and a stopping time τ of the filtration {Ft}, where τ0 is the first time that the process

{Xπ,c
t } hits zero, i.e, τ0 = inf{t ≥ 0;Xπ,c

t− = 0} = inf{t ≥ 0;Xπ,0
t = 0}. In addition, note that capital

injection is only made when the surplus hits zero, so it is a regular stochastic control problem when

the surplus is positive. Assume that the value function V (x) of (2.4) is twice differentiable. Then,

the dynamic programming principle (see Fleming and Soner (2006)) motivates that V (x) satisfies

the following HJB equation

min
π

(Aπ − δ)V (x) = 0, x > 0, (3.14)

with the boundary conditions (3.11) and (3.12). The following theorem shows us that if we can

find a solution to the HJB equation (3.14) satisfying (3.11) and (3.12), then the solution must be

the value function.

Theorem 3.1. (Verification Theorem) If there exists a bounded twice differentiable function W (x)

such that W ′(0) < −1 and W (x) is a strictly convex decreasing solution to (3.14) with the boundary

conditions (3.11) and (3.12), then we have

W (x) = V (x), for all x ≥ 0.

Proof. For any pair of admissible policies (π, c), the surplus process is described by Xπ,c
t =

c if Xπ,c
t− = 0 and

dXπ,c
t =

[
r0X

π,c
t− + (α− r0)πt + µ

]
dt+ σdBX

t + βπtdB
S
t , with Xπ,c

0− = x, if Xπ,c
t− > 0.
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Applying the generalized Itô formula, we obtain

e−δtW (Xπ,c
t ) = W (x) +

∫ t

0
e−δs(Aπ − δ)W (Xπ,c

s− )ds+ σ

∫ t

0
e−δsW ′(Xπ,c

s− )dBX
s (3.15)

+β

∫ t

0
e−δsπsW

′(Xπ,c
s− )dBS

s +
∑

0≤s≤t;Xπ,c
s ̸=Xπ,c

s−

e−δs[W (Xπ,c
s )−W (Xπ,c

s− )]

≥ W (x) +
∑

0≤s≤t

e−δs[W (c)−W (0+)]I{Xπ,c
s− =0}

+σ

∫ t

0
e−δsW ′(Xπ,c

s− )dBX
s + β

∫ t

0
e−δsπsW

′(Xπ,c
s− )dBS

s

≥ W (x)−
∑

0≤s≤t

e−δs(K + c)I{Xπ,c
s− =0}

+σ

∫ t

0
e−δsW ′(Xπ,c

s− )dBX
s + β

∫ t

0
e−δsπsW

′(Xπ,c
s− )dBS

s , (3.16)

where the first inequality follows from (3.14) and the second inequality is due to (3.12). Due to the

boundedness of W ′(x) and (2.3), the last two terms in the last inequality are martingales. Taking

the conditional expectation on both sides of the last inequality, we get

W (x) ≤ E

 ∑
0≤s≤t

e−δs(K + c)I{Xπ,c
s− =0} | X

π,c
0− = x

+ E
[
e−δtW (Xπ,c

t )|Xπ,c
0− = x

]
. (3.17)

Finally, letting t → ∞ and taking infimum for all admissible policies, we have W (x) ≤ V (x) for all

x ≥ 0.

On the other hand, if we take a pair of admissible policies (π∗, c∗) such that (Aπ∗ − δ)W (x) = 0

for x > 0 and c∗ = argc>0min{K + c +W (c)}, then the inequalities in (3.16) and (3.17) become

equalities. So, we have W (x) = V π∗,c∗(x) ≥ V (x) for all x ≥ 0. Note that the convexity of W (x)

and W ′(0) < −1 guarantees the existence of π∗ and c∗ > 0.

4 Solutions to the optimization problem

In this section, we try to construct a solution to the HJB equation (3.14) with the boundary

conditions (3.12) and (3.11) given that the conditions stated in the verification theorem are satisfied.

If we can find a pair of admissible policies under which the performance function is the solution

to (3.14), then, according to the verification theorem, this solution is the value function defined by

(2.4). Also, it implies that the value function is indeed a twice differentiable function.

Assume that W (x) is a convex candidate of the solution to (3.14) with the boundary conditions

11



(3.11) and (3.12). Then, W (x) satisfies

min
π

{
1

2
[β2π2 + 2ρβσπ + σ2]W ′′(x) + [r0x+ (α− r0)π + µ]W ′(x)

}
− δW (x) = 0. (4.1)

Taking the derivative with respect to π on both sides of (4.1) and noting the convexity of W (x), it

follows that the minimum can be attained when

π(x) = − 1

β2
(α− r0)

W ′(x)

W ′′(x)
− ρ

σ

β
. (4.2)

Let m = (α−r0)/β be the market price of risk and π̃(x) = βπ(x)+ρσ. Then, (4.2) can be rewritten

as
W ′′(x)

W ′(x)
= − m

π̃(x)
. (4.3)

After putting (4.2) or (4.3) into (4.1), we can cancel π(x) out in (4.1). Hence, we have

1

2
(1− ρ2)σ2W ′′(x)− 1

2
m2 (W

′(x))2

W ′′(x)
+ (r0x+ µ− ρσm)W ′(x)− δW (x) = 0. (4.4)

Due to the presence of r0 in (4.4), it is impossible to find an explicit solution to the ODE. So, we

opt for another way to tackle the problem. Instead of canceling π(x) in (4.1), we can cancel W ′′(x)

out. It follows that[
r0x+ µ− ρσm+

1

2
mπ̃(x)− 1

2
(1− ρ2)σ2 m

π̃(x)

]
W ′(x)− δW (x) = 0. (4.5)

Then, taking derivative on both sides of (4.5) and using (4.3) again, we can show that π̃(x) satisfies

π̃′(x) =
(m− 2 r0−δ

m )π̃2(x) + 2(r0x+ µ− ρσm)π̃(x)− (1− ρ2)σ2m

π̃2(x) + (1− ρ2)σ2
, x ≥ 0. (4.6)

Again, we still cannot derive an explicit solution to the ODE (4.6) directly as we do not know the

initial value π̃(0). Fortunately, we are able to derive the limit of π̃(x) as x tends to ∞ so that

(4.6) can be used to solve for the optimal investment policy. Before doing so, we first try to obtain

closed-form solutions in some special cases.

4.1 |ρ| = 1

In this subsection, we study the case that the risky asset and the company’s surplus are linearly

correlated, that is, |ρ| = 1. In this case, we have the following theorem.

Theorem 4.1. For |ρ| = 1, we have the following three results:
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(i) If ρ = −1, then the optimal investment policy π∗
t = σ/β for all t ≥ 0 and the surplus never

hits zero. So, there is no capital injection, and hence V (x) = 0 for all x > 0.

(ii) If ρ = 1 and µ/σ ≥ m, then the optimal investment policy π∗
t = −σ/β for all t ≥ 0 and the

surplus never hits zero. So, there is no capital injection, and hence V (x) = 0 for all x > 0.

(iii) If ρ = 1 and µ/σ < m, then the optimal investment policy has the form

π∗
t =


ξ
β (x̄−Xπ∗,c∗

t− )− σ
β , 0 ≤ Xπ∗,c∗

t− < x̄,

−σ
β , Xπ∗,c∗

t− ≥ x̄,
(4.7)

where

x̄ =
σ

r0
(m− µ

σ
), ξ =

√
M2 + 8r0 −M

2
, M = m− 2

r0 − δ

m
, (4.8)

and the optimal capital injection amount c∗ > 0 is uniquely determined by

ξ

m+ ξ
(x̄− c)

[(
x̄

x̄− c

)1+m
ξ

− 1

]
− c = K. (4.9)

As a result, the value function is given by

V (x) = V π∗,c∗(x) =

 k1(x̄− x)
1+m

ξ , 0 ≤ x < x̄,

0, x ≥ x̄,
(4.10)

where

k1 =
K + c∗

x̄
1+m

ξ − (x̄− c∗)
1+m

ξ

. (4.11)

Proof. For ρ = −1, the proof is straightforward. In fact, we can take the investment policy π̃(x) = 0,

that is, π(x) = σ/β for all x ≥ 0. Then, the diffusion term in (2.2) can be completely canceled out

and the drift coefficient turns out to be r0x + µ + σm, which is always positive for all x ≥ 0. In

this case, the surplus never hits zero. Therefore, the optimal investment policy is π∗
t = σ/β and no

capital injection policy is made. This implies that the value function V (x) = 0 for all x ≥ 0, and

hence (i) is proved.

If ρ = 1, although we can take the investment policy π(x) = −σ/β for all x ≥ 0 to cancel out

the diffusion term in (2.2), the drift term becomes r0x + µ − σm which is not always positive. If

µ/σ ≥ m, the drift term is positive for all x > 0. So, the optimal investment policy is π∗
t = −σ/β

for all t ≥ 0 and the value function V (x) = 0 for all x ≥ 0. This gives (ii).

If ρ = 1 and µ/σ < m, the optimal investment policy is not constant any more. Note that x̄

is defined in (4.8). For x ≥ x̄, the drift term r0x + µ − σm ≥ 0, so we still can take the optimal

13



investment policy π∗
t = −σ/β for all t ≥ 0 so that the value function V (x) = 0 for all x ≥ x̄.

For 0 ≤ x < x̄, we need to construct a solution to the HJB equation (3.14) with the boundary

conditions (3.12) and (3.11). Based on the analysis at the beginning of this section, the optimal

investment policy should satisfy (4.6). Since ρ = 1, (4.6) reduces to

π̃′(x) = M + 2r0
x− x̄

π̃(x)
, x ≥ 0, (4.12)

where M is given by (4.8). Without knowing the initial value π̃(0), π̃(x) cannot be solved directly

from (4.12). However, with the condition π̃(x̄) = 0, the ODE (4.12) has the following solution

π̃(x) = ξ(x̄− x), 0 ≤ x ≤ x̄, (4.13)

and ξ is the root of

ξ2 +Mξ − 2r0 = 0. (4.14)

In order to construct a convex solution to the HJB equation, we need to find a nonnegative π̃(x)

because of (4.3). Thus, we take ξ as the positive root of (4.14) which is given in (4.8).

Putting (4.13) back into (4.3) and noting the continuity of the value function at x̄, that is,

W (x̄) = 0, we obtain

W ′(x) = −k1

(
1 +

m

ξ

)
(x̄− x)

m
ξ , (4.15)

W (x) = k1(x̄− x)
1+m

ξ , (4.16)

where k1 > 0 is a constant. To determine the parameter k1 and the optimal capital injection

policy, we use the boundary condition (3.12). According to the convexity of the value function, it

is necessary to find c∗ such that

W ′(c∗) = −1,

W (c∗) = W (0)−K − c∗. (4.17)

These together with (4.15) and (4.16) yield c∗ ∈ (0, x̄), which is the unique solution to the equation

(4.9). In fact, let

h(c) =
ξ

m+ ξ
(x̄− c)

[(
x̄

x̄− c

)1+m
ξ

− 1

]
− c.

Then, it is easy to check that h(0) = 0, h(x̄−) = +∞, and

h′(c) =
m

m+ ξ

[(
x̄

x̄− c

)1+m
ξ

− 1

]
> 0, for 0 < c < x̄,
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which imply that c∗ uniquely exists. That is to say, it is optimal to inject c∗ when the company’s

surplus hits zero. Then, combining (4.16) and (4.17), we obtain (4.11).

In view of the above analysis, we can find a solution W (x) to the HJB equation with the bound-

ary conditions (3.11) and (3.12). It is easy to check that this solution satisfies the conditions in

Theorem 3.1. Also, it can be shown that both the investment policy π∗ and the capital injection pol-

icy c∗ defined by (4.7) and (4.24), respectively, are admissible policies, and that W (x) = V π∗,c∗(x).

Then, (4.10) follows from the the verification theorem. This completes the proof of (iii).

4.2 |ρ| < 1

Recall the ODE (4.6) satisfied by the optimal investment policy. It is not possible to uniquely

determine a solution to the above equation without any boundary condition. Before we further

investigate the optimal investment policy, we now present some properties of the solutions to (4.6).

Let η+ > 0 and η− < 0 be the two roots of the equation(
m+

2δ

m

)
x2 + 2(µ− ρσm)x− (1− ρ2)σ2m = 0.

Lemma 4.1. If limx→∞ f(x) is finite and limx→∞ f ′(x) exists (the existence of the limit here means

that it may be either a finite real number, ∞, or −∞), then limx→∞ f ′(x) = 0.

Proof. The proof of Lemma 4.1 is straightforward.

Lemma 4.2. Let π̃(x) be a solution to the ODE (4.6). Then, the following two statements hold:

(i) If r0 = 0, either limx→∞ π̃(x) = ∞, π̃(x) = η+ for all x ≥ 0, or limx→∞ π̃(x) = η− holds;

(ii) If r0 > 0, either limx→∞ π̃(x) = ∞, limx→∞ π̃(x) = 0, or limx→∞ π̃(x) = −∞ holds. Fur-

thermore, if limx→∞ π̃(x) ̸= −∞, we have π̃(x) > 0 for all x ≥ 0.

Proof. Here, we only present the proof for m − 2(r0 − δ)/m > 0. For m − 2(r0 − δ)/m ≤ 0, the

proof is similar.

We first prove (i) with r0 = 0. Note that η+ > 0 and η− < 0 are the two zeros of the numerator

in (4.6). Thus, it is clear that both π̃(x) = η+ and π̃(x) = η− are two solutions to the ODE (4.6).

If π̃(0) > η+, then we have π̃′(0) > 0, which implies that π̃(x) > η+ and π̃′(x) > 0 for all x ≥ 0.

If there exists η+ < ∆ < ∞ such that limx→∞ π̃(x) = ∆, then, by taking x → ∞ on both sides of

(4.6), one can show that limx→∞ π̃′(x) exists and is positive. Hence, it follows from Lemma 4.1 that
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limx→∞ π̃′(x) = 0, which leads to a contradiction. Similarly, we can conclude that, for π̃(0) < η+,

limx→∞ π̃(x) = η−.

For (ii) with r0 > 0, we first show that limx→∞ π̃(x) cannot be a nonzero finite constant. If

there exists a finite constant ∆ ̸= 0 such that limx→∞ π̃(x) = ∆, then, by taking x → ∞ on both

sides of (4.6), we have limx→∞ π̃′(x) = ∞ or −∞, which again shows a contradiction because of

Lemma 4.1.

Note that the numerator in (4.6) is a quadratic polynomial with respect to π̃(x). Letting the

numerator be zero, we obtain the positive solution

π̂+(x) =
(1− ρ2)σ2m√

(r0x+ µ− ρσm)2 + (1− ρ2)σ2[m2 − 2(r0 − δ)] + r0x+ µ− ρσm

and the negative solution

π̂−(x) = −
√

(r0x+ µ− ρσm)2 + (1− ρ2)σ2[m2 − 2(r0 − δ)] + r0x+ µ− ρσm

m− 2(r0 − δ)/m
.

It is easy to see that both π̂+(x) and π̂−(x) are strictly decreasing, limx→∞ π̂+(x) = 0, and

limx→∞ π̂−(x) = −∞. To complete the proof of (ii), we need to discuss the following four cases:

(1) If there exists x′ ≥ 0 such that π̃(x′) ≥ π̂+(x
′), then this together with (4.6) gives π̃′(x′) ≥ 0.

Since π̂+(x) is strictly decreasing with respect to x, it follows that π̃(x) > π̂+(x) for all x > x′.

Again, due to (4.6), π̃′(x) > 0 for all x ≥ x′. Thus, we can conclude that limx→∞ π̃(x) = ∞

as the limit cannot be a nonzero finite constant.

(2) If there exists x′ ≥ 0 such that π̂−(x
′) ≤ π̃(x′) ≤ 0, then (4.6) yields π̃′(x) ≤ 0 for all x > x′.

So, we have limx→∞ π̃(x) = −∞ as the limit cannot be a nonzero finite constant.

(3) If 0 < π̃(x) < π̂+(x) for all x, then 0 ≤ limx→∞ π̃(x) ≤ limx→∞ π̂+(x) = 0.

(4) If π̃(x) < π̂−(x) for all x ≥ 0, then (4.6) yields π̃′(x) > 0 for all x ≥ 0. Note that π̂−(x) is

strictly decreasing and limx→∞ π̂−(x) = −∞. Hence, this case is impossible.

Despite the fact that we do not have the initial value of π̃(x), we can derive the limit of

the optimal investment strategy π̃(x) by using the properties of the value function and the ODE

satisfied by the optimal investment policy. In the following theorem, we give the limiting value of

the optimal investment policy which is the key step to solve the stochastic optimization problem.
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Theorem 4.2. For |ρ| < 1, if W (x) satisfies all the conditions of the verification theorem and the

optimal investment policy π̃(x) is differentiable, then we have:

(i) The optimal investment policy π̃(x) > 0 for x ≥ 0;

(ii) If r0 = 0, then the optimal investment policy π̃(x) = η+ for all x ≥ 0;

(iii) If r0 > 0, then the optimal investment policy satisfies that limx→∞ π̃(x) = 0. If limx→∞ π̃′(x)

exists, then limx→∞ π̃′(x) = 0 and limx→∞ xπ̃(x) = m(1− ρ2)σ2/2r0.

Proof. Note that W (x), the candidate solution to the value function, should be a decreasing func-

tion. It follows from (4.3) that π̃(x) ≥ 0 for all x ≥ 0 when W (x) is convex. In addition, with

|ρ| < 1, there does not exist an investment policy by which the diffusion term can be completely

canceled out, because the diffusion coefficient is always larger than or equal to
√

1− ρ2σ > 0. From

the time change of martingales, we see that for any initial surplus x ≥ 0, there is a positive prob-

ability that the surplus hits zero and hence capital injection is necessary. Thus, W (x) > 0 for all

x ≥ 0. From the boundary condition limx→∞W (x) = 0 and the fact W (x) is a decreasing function,

it can be shown that W ′(x) < 0 for all x ≥ 0, and that limx→∞W ′(x) = 0. Thus, π̃(x) > 0 for all

x ≥ 0 due to (4.3). So, (i) is proved.

In order to prove (ii) and (iii), we first show that limx→∞ π̃(x) ̸= ∞. Now assume that

limx→∞ π̃(x) = ∞. Taking limits on both sides of (4.3), we get

lim
x→∞

W ′′(x)

W ′(x)
= − lim

x→∞

m

π̃(x)
= 0, and then lim

x→∞

W ′(x)

W ′′(x)
= −∞.

Then, by l’Hopital’s rule, we have

lim
x→∞

W (x)

W ′(x)
= lim

x→∞

W ′(x)

W ′′(x)
= −∞.

Recall the ODE (4.4) and note that W ′(x) < 0 for all x ≥ 0. Dividing by W ′(x) on both sides of

(4.4) and taking the limit x → ∞, we obtain

lim
x→∞

{
1

2
(1− ρ2)σ2W

′′(x)

W ′(x)
− 1

2
m2 W

′(x)

W ′′(x)
+ [r0x+ µ− ρσm]− δ

W (x)

W ′(x)

}
= +∞ ̸= 0,

which shows a contradiction. Therefore, we conclude that limx→∞ π̃(x) ̸= ∞.

Then, according to Lemma 4.2, we know that π̃(x) = η+ for all x ≥ 0 when r0 = 0 and

limx→∞ π̃(x) = 0 when r0 > 0. Furthermore, for r0 > 0, we have limx→∞ π̃′(x) = 0. Taking limits

on both sides of (4.6), we obtain limx→∞ xπ̃(x) = m(1 − ρ2)σ2/2r0. Therefore, both (ii) and (iii)

are proved.
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In the above theorem, we obtain a candidate for the optimal investment policy when r0 = 0,

and the limiting value of the optimal investment policy when r0 > 0. Then, in the following sub-

sections, we shall solve the value functions and the optimal policies for the two cases.

4.2.1 r0 = 0

Theorem 4.3. If r0 = 0, then the optimal investment policy is given by

π∗
t = η+, for all t ≥ 0,

and the optimal capital injection amount c∗ > 0 is uniquely determined by the equation

e
m
η+

c
=

m

η+
(c+K) + 1. (4.18)

As a result, the value function has the form

V (x) =
K + c∗

1− e
− m

η+
c∗
e
− m

η+
x
, x ≥ 0. (4.19)

Proof. For r0 = 0, it follows from Theorem 4.2 that π̃(x) = η+ for all x ≥ 0. Then, from (4.3), we

have

W ′(x) = −k2
m

η+
e
− m

η+
x
,

W (x) = k2e
− m

η+
x
.

To determine the parameter k2 and the optimal capital injection policy, we use the boundary

condition (3.12). Because of the convexity of W (x), it is sufficient to find c∗ such that

W ′(c∗) = −1,

W (c∗) = W (0)−K − c∗.

So, c∗ > 0 is determined by the equation (4.18). It is easy to check that c∗ is unique. By solving

W (0) = W (c∗) +K + c∗, we obtain k2 = (K + c∗)/(1 − e−m/η+c∗). By direct calculation, one can

verify that W (x) obtained here satisfies all the conditions of the verification theorem. Hence, the

theorem follows from the verification theorem.

4.2.2 r0 > 0

As is shown in Theorem 4.2, we need to find a positive solution to (4.6) such that limx→∞ π̃(x) =

0 when r0 > 0. However, an explicit solution is difficult to obtain except for the special case of
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δ = 0 (see Remark 4.1 below). In the following theorem, we first give a general solution in series

form.

Theorem 4.4. Given x0 defined in (4.24) below, the ODE (4.6) together with the terminal condition

limx→∞ π̃(x) = 0 determines a unique solution on [0,∞) such that

π̃(x) =
∞∑
k=1

akx
−k, for x > x0, (4.20)

where the coefficients ak for k = 1, 2, · · · are calculated recursively by (4.21)-(4.23) given below.

Proof. Inspired by (iii) of Theorem 4.2, we guess that the optimal investment policy π̃(x) can be

written as a series function (4.20). Clearly, we have

π̃2(x) =

∞∑
k=2

bkx
−k, with bk =

∑
1≤i≤k−1

aiak−i, k ≥ 2.

Assume that, for large enough x, the series function (4.20) is uniformly convergent. Then, it follows

that

π̃′(x) =
∞∑
k=2

ak−1(1− k)x−k.

Putting (4.20), π̃2(x) and π̃′(x) into (4.6), we have

∞∑
k=4

 ∑
2≤i≤k−2

ai−1(1− i)bk−i

x−k =

∞∑
k=2

[(
m− 2(r0 − δ)

m

)
bk + 2(r0ak+1 + (µ− ρσm)ak)

]
x−k

+2[r0a2 + (µ− ρσm)a1]x
−1 + 2r0a1 − (1− ρ2)σ2m.

Comparing all the coefficients of x−k for k = 1, 2, · · · , we obtain

a1 =
(1− ρ2)σ2

2r0
, (4.21)

a2 = −µ− ρσm

r0
a1, (4.22)

and, for k = 2, 3, · · · ,

ak+1 = −µ− ρσm

r0
ak −

1

2r0

(
m− 2(r0 − δ)

m

)
bk +

1

2r0

 ∑
2≤i≤k−2

ai−1(1− i)bk−i

 . (4.23)

Define a constant x0 as

x0 = max

{∣∣∣∣µ− ρσm

r0

∣∣∣∣ , a1 ∣∣∣∣µ− ρσm

r0

∣∣∣∣ , 1

2r0

∣∣∣∣m− 2(r0 − δ)

m

∣∣∣∣ , 1

2r0

}
. (4.24)
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Then, by the recursion formulas, it follows that |ak| ≤ xk0 for large enough k. Also, note that∑∞
k=1(x0/x)

k is uniformly convergent on [x1,∞) for any x1 > x0. Thus, the series function∑∞
k=1 akx

−k is uniformly convergent on [x1,∞) for any x1 > x0.

Note that the coefficients ak are uniquely determined for x > x0. Then, the solution is unique

on (x0,∞). Also, note that the right hand side of (4.6) is not singular. By the continuation of

solutions to the ODE, it follows that the solution is unique on [0,∞). This completes the proof.

Theorem 4.3 and Theorem 4.4 tell us that the ODE (4.6) together with the terminal condition

limx→∞ π̃(x) = 0 determines a unique positive solution, which is a candidate for the optimal

investment policy. Once the optimal investment policy π̃(x) is determined, the value function can

be derived using (4.3).

Theorem 4.5. If r0 > 0, the optimal investment policy is given by

π∗
t = π̃

(
Xπ∗,c∗

t−

)
,

and the optimal capital injection amount c∗ > 0 is uniquely given by the solution to the equation∫ c

0
exp

(
−
∫ y

0

m

π̃(s)
ds

)
dy · exp

(∫ c

0

m

π̃(s)
ds

)
− c = K. (4.25)

As a result, the value function has the form

V (x) = k

∫ ∞

x
exp

(
−
∫ y

0

m

π̃(s)
ds

)
dy, x ≥ 0,

where k is given by

k =
K + c∗∫ c∗

0 exp
(
−
∫ y
0

m
π̃(s)ds

)
dy

= exp

(∫ c∗

0

m

π̃(s)
ds

)
. (4.26)

Proof. It follows from (4.3) that

W ′(x) = −k exp

(
−
∫ x

0

m

π̃(s)
ds

)
,

W (x) = W (0)− k

∫ x

0
exp

(
−
∫ y

0

m

π̃(s)
ds

)
dy.

These together with the boundary condition W (∞) = 0 yield

W (x) = k

∫ ∞

x
exp

(
−
∫ y

0

m

π̃(s)
ds

)
dy,
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where k needs to be determined later. Similarly, because of the convexity of W (x), it is sufficient

to find c∗ such that

W ′(c∗) = −1,

W (c∗) = W (0)−K − c∗.

From the first equation, we obtain k = exp
(∫ c∗

0 m/π̃(s)ds
)
. In order to determine c∗ from the

second equation, we define

g(c) =

∫ c

0
exp

(
−
∫ y

0

m

π̃(s)
ds

)
dy · exp

(∫ c

0

m

π̃(s)
ds

)
− c, c ≥ 0.

Note that π̃(x) > 0 for all x ≥ 0. Then, it is easy to check that g(0) = 0 and g(c) ≥ 0. In addition,

since π̃(x) ∼ a1/x for x → ∞, we have∫ c

0

m

π̃(s)
ds ∼ m

2a1
c2, as c → ∞,

which implies that ∫ ∞

0
exp

(
−
∫ y

0

m

π̃(s)
ds

)
dy < ∞,

and hence limc→∞ g(c) = ∞. Also, we have

g′(c) = (g(c) + c)
m

π̃(c)
> 0.

Therefore, we conclude that c∗ can be uniquely determined from (4.25), and k is given by (4.26).

In what follows we verify that π̃(x) given by Theorem 4.4 and W (x) obtained above satisfy the

boundary conditions (3.11) and (3.12), and the HJB equation (4.1).

Firstly, it is obvious that limx→∞W (x) = 0. For the boundary condition (3.12), it follows by

W (c∗) +K + c∗ = W (0)− k

∫ c∗

0
exp

(
−
∫ y

0

m

π̃(s)
ds

)
dy +K + c∗

= W (0)− K + c∗∫ c∗

0 exp
(
−
∫ y
0

m
π̃(s)ds

)
dy

∫ c∗

0
exp

(
−
∫ y

0

m

π̃(s)
ds

)
dy +K + c∗

= W (0).

Now we verify the HJB equation (4.1). Note that

W ′(x) = −k exp

(
−
∫ x

0

m

π̃(s)
ds

)
,

W ′′(x) = W ′(x) = k exp

(
−
∫ x

0

m

π̃(s)
ds

)
m

π̃(x)
,
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which imply that
W ′′(x)

W ′(x)
= − m

π̃(x)
.

Thus, we just need to verify that W (x) and π̃(x) satisfy (4.5), that is

L(x) , mπ̃2(x) + 2(r0x+ µ− ρσm)π̃(x)− (1− ρ2)σ2m

π̃(x)
= 2δ

W (x)

W ′(x)

= −2δ

∫ ∞

x
exp

{
−
∫ y

0

m

π̃(s)
ds

}
dy exp

{∫ x

0

m

π̃(s)
ds

}
, R(x).

Then, by l’Hopital’s rule, it follows that

lim
x→∞

R(x) = −2δ lim
x→∞

π̃(x)

m
= 0,

and R(x) satisfies the ODE

R′(x) = 2δ +R(x)
m

π̃(x)
.

In addition,

lim
x→∞

L(x) = lim
x→∞

2r0xπ̃(x)− (1− ρ2)σ2m

π̃(x)
+ 2(µ− ρσm)

= lim
x→∞

(2r0a1 − (1− ρ2)σ2m) + 2r0
∑∞

k=1 ak+1x
−k∑∞

k=1 akx
−k

+ 2(µ− ρσm)

= 2r0
a2
a1

+ 2(µ− ρσm)

= 0,

where the last two steps are due to (4.21) and (4.22). Also, L(x) satisfies the ODE:

L′(x) =
2[mπ̃2(x) + (r0x+ µ− ρσm)π̃(x)]π̃′(x) + 2r0π̃

2(x)

π̃2(x)

−[mπ̃2(x) + 2(r0x+ µ− ρσm)π̃(x)− (1− ρ2)σ2m]
π̃′(x)

π̃2(x)

= 2r0 +m[π̃2(x) + (1− ρ2)σ2]
π̃′(x)

π̃2(x)

= 2δ + L(x)
m

π̃(x)
,

where (4.6) is used in the last step. In conclusion, we have limx→∞ L(x)−R(x) = 0 and L(x)−R(x)

satisfying the ODE

(L(x)−R(x))′ = (L(x)−R(x))
m

π̃(x)
, x ≥ 0.

Since π̃(x) > 0 for all x, the unique solution is L(x)−R(x) = 0, that is

L(x) = R(x), x ≥ 0.

Finally, a direct application of the verification theorem gives the theorem.
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Though we cannot in general find the optimal investment policy in closed form, we can derive

an explicit expression for the optimal investment policy in the case of the discount rate δ = 0. In

fact, in the following numerical examples, we can see that the explicit expression for the optimal

investment policy in the case of δ = 0 is close to that in the case of δ ̸= 0, especially for an insurance

company with a large initial surplus.

Remark 4.1. (Optimal investment policy with δ = 0)

In the case of δ = 0, the value function is obtained by minimizing the expected value of the total

capital injection cost without discount. In this case, the optimal investment policy can be obtained

in closed form. In fact, it follows from (4.5) that[
r0x+ µ− ρσm+

1

2
mπ̃(x)− 1

2
(1− ρ2)σ2 m

π̃(x)

]
W ′(x) = 0,

which implies that the optimal investment policy is the positive root of the following equation

mπ̃2(x) + 2(r0x+ µ− ρσm)π̃(x)− (1− ρ2)σ2m = 0. (4.27)

Hence, we have

π̃(x) =

√(r0
m
x+

µ

m
− ρσ

)2
+ (1− ρ2)σ2 −

(r0
m
x+

µ

m
− ρσ

)
. (4.28)

It is easy to verify that the solution to (4.27) is also the solution to (4.6), and (4.28) satisfies the

condition that limx→∞ π̃(x) = 0. Note that the optimal investment policy (4.28) is the same as

the one that minimizes the probability of ruin in the diffusion risk model (see Browne (1995) for

details).

5 Numerical examples

In the previous section, Theorem 4.4 gives an explicit expression for the optimal investment policy

for x > x0, but we do not know much about the optimal investment policy when 0 ≤ x ≤ x0. In

this section, we propose a numerical method to solve the optimal investment policy, which can help

us understand more about the optimal investment policy for x > 0.

Recall again the ODE (4.6) satisfied by the optimal investment policy. In order to facilitate

the computation, we perform a change of variable. Let ω(x) = π̃(1/x). Then, we have π̃′ (1/x) =

−x2ω(x), and (4.6) can be translated to

ω′(x) = −
(m− 2 r0−δ

m )ω2(x) + 2( r0x + (µ− ρσm))ω(x)− (1− ρ2)σ2m

x2(ω2(x) + (1− ρ2)σ2)
, x > 0, (5.1)
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with ω(0) = 0. Note that (5.1) is a singular ODE at x = 0. In order to avoid the singularity

point x = 0, we can employ the backward Euler method. Given a small h > 0, choose a partition

xn = nh, n = 1, 2, · · · , for the interval [0,∞) and define ωn = ω(xn). Integrating from xn to xn+1

on both sides of (5.1), we have

ωn+1 = ωn −
∫ xn+1

xn

(m− 2 r0−δ
m )ω2(x) + 2( r0x + µ− ρσm)ω(x)− (1− ρ2)σ2m

x2(ω2(x) + (1− ρ2)σ2)
dx

≈ ωn −
(m− 2 r0−δ

m )ω2
n+1 + 2( r0

xn+1
+ µ− ρσm)ωn+1 − (1− ρ2)σ2m

x2n+1(ω
2
n+1 + (1− ρ2)σ2)

h,

where the last equation is obtained by approximation at the right point. If ωn is given, then ωn+1

can be approximated by solving the following cubic equation

x2n+1ω
3
n+1 +

[(
m− 2

r0 − δ

m

)
h+ x2n+1ωn

]
ω2
n+1

+ 2

(
r0

xn+1
+ µ− ρσm

)
hωn+1 − (1− ρ2)σ2

(
mh+ x2n+1ωn

)
= 0.

Note that the constant term of the above equation is negative. So, there exists at least one real

positive root for this cubic equation. We take ωn+1 as the minimal positive real root and do the

recursion. If the step width h is small enough, the solution to the IVP of (5.1) can be solved

numerically. In the following, we carry out a few numerical examples to assess the performance of

the backward Euler method.

In this section, the values of the model parameters are set as follows: the risk-free interest rate

r0 = 0.05, the expected return of the risky asset α = 0.15 with a constant volatility β = 0.3, the

drift and volatility of the portfolio’s surplus µ = 0.3 and σ = 0.5, the correlation coefficient of the

risky asset and the portfolio’s surplus ρ = −0.5, and the ratio of the fixed cost to the proportional

cost for capital injection K/l = 2.

Based on these values, we first compare the approximated optimal investment policy obtained

using the backward Euler method with the exact one obtained from (4.28) in the case of δ = 0, by

plotting the optimal investment policy π∗(x) against the initial surplus x. Figure 1 shows that the

two curves are very close to each other.

Given the parameter values, we apply the backward Euler method to find approximate solutions

to the IVP of (5.1) in the following examples. In particular, the numerical examples show how the

optimal policies change as one of parameter values changes and the other parameter values are kept

fixed.
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Figure 1: The plot of optimal investment policies with δ = 0 against initial surplus
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Example 1 (Effect of the discount rate δ). In Figure 2, the two panels present the effect of

the discount rate on the optimal investment policy and the optimal amount of capital injection,

respectively. In practice, the value of the discount rate is usually not larger than 30%. However,

in order to display comparisons clearly, we take δ = 0, 0.1, 1 in the upper panel of Figure 2. We

see that the effect of the discount rate on the optimal investment policy is quite small and that the

three sets of optimal investment policies are very close to each other. This phenomenon, noticed

for our specific model parameters, suggests that the optimal investment policy with δ = 0 given by

π∗(x) =
1

β

[√(r0
m
x+

µ

m
− ρσ

)2
+ (1− ρ2)σ2 −

(r0
m
x+

µ

m

)]
, x ≥ 0,

might serve as a crude estimate for that with δ > 0. In the lower panel of Figure 2, the optimal

amount c∗ decreases as the discount rate increases. This may be due to the fact that, in order to

minimize the discounted capital injection cost, it is better to delay part of each capital injection if

the discounted rate is large. With capital injection, the surplus eventually tends to infinity. Also,

there are at most a finite number of capital injection and most of them happen at early times. 2

In the following examples, we set δ = 0.1.

Example 2 (Effect of the correlation coefficient ρ). In the upper panel of Figure 3, the

optimal investment amount in the risk-free asset decreases with the correlation coefficient ρ. In the
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Figure 2: Effect of the discount rate δ
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financial market, the best way to diversify the risk is to invest in a risky asset which is negatively

correlated to one’s own business. If there is only a positively correlated risky asset in the market,

one can sell short this asset to diversify the underlying risk of the business. The effect of the

correlation coefficient on the optimal amount of each capital injection looks interesting in the lower

panel of Figure 3. The shape of the optimal amount is bell shaped. The shape is not completely

symmetrical at ρ = 0, and the peak is attained when ρ is slightly larger than 0. If |ρ| = 1, the

risk can be completely diversified and the surplus never hits zero, so the optimal amount of capital

injection is zero. 2

Example 3 (Effect of the risk-free interest rate r0). In the lower panel of Figure 4, we

see that the optimal investment policy decreases with the risk-free interest rate r0. If r0 increases,

the investor would like to reduce the amount of risky investment and invest more in the risk-free

asset. The lower panel of Figure 4 reveals the fact that the optimal amount of each capital injection

decreases as the risk-free interest rate increases. If r0 becomes larger, the probability of the surplus

hitting zero gets smaller. In this situation, in order to minimize the transaction costs, the amount

of each capital injection tends to be small. 2

Example 4 (Effect of the surplus volatility σ). As we can see in the upper panel of Figure 5,

the optimal investment amount in the risky asset increases with the surplus volatility σ. It indicates

that the larger the underlying risk of the insurance portfolio, the larger the amount invested in the

risky asset. Again, this phenomenon is due to risk diversification. In the lower panel of Figure 5,

we see that the optimal amount of capital injection increases with the surplus volatility σ since the

probability of the surplus of hitting zero is small (large) when σ is small (large). 2

Example 5 (Effect of transaction costs). In Figure 6, we see that the optimal amount of

capital injection increases with the ratio of the fixed cost to the proportional cost K/l. For a fixed l,

the investor would like to inject more when the surplus hits zero if the fixed cost is large. For a fixed

K, the investor would like to inject less if the proportional cost is large since a larger injection leads

to a larger transaction cost. Note that the transaction costs do not affect the optimal investment

policy. 2
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Figure 3: Effect of the correlation coefficient ρ
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Figure 4: Effect of the risk-free interest rate r0
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Figure 5: Effect of the surplus volatility σ
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Figure 6: Effect of the transaction costs K and l
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6 Concluding remarks

In this paper, we consider the optimal portfolio selection and capital injection policies which min-

imize the expected value of the total discounted capital injection costs in the particular case for

which capital injections happen when the surplus is zero. The portfolio’s surplus is allowed to

be invested in the classical Black-Scholes financial market, and capital injection is assumed to be

made when the surplus hits zero. This leads to a regular-impulse mixed stochastic control problem

in a diffusion model. The main contribution of this paper is that we obtain explicit solutions for

the optimal investment policy, the optimal capital injection policy, and the value function in three

cases, namely, a perfect correlation between the risky asset and the surplus process, a zero risk-free

interest rate, or a zero discount rate in the definition of the company’s optimization problem. In

other cases, an explicit expression for the optimal investment policy can only be found for values

of the surplus account exceeding a certain threshold. In addition, we propose a method to solve

the optimal investment policy numerically. By a change of variable, the optimal investment policy

can be translated to the solution to an IVP of a singular ODE. Then, the backward Euler method

is applied to solve the IVP numerically.

In the model set-up of this paper, there are no short shelling and borrowing restrictions for the
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investment and the surplus level for capital injection is fixed. The same optimization problem with

investment restrictions but no capital injection restrictions is another interesting topic.
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